Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1.

نویسندگان

  • Neal Sugawara
  • Tamara Goldfarb
  • Barbara Studamire
  • Eric Alani
  • James E Haber
چکیده

Recombination between moderately divergent DNA sequences is impaired compared with identical sequences. In yeast, an HO endonuclease-induced double-strand break can be repaired by single-strand annealing (SSA) between flanking homologous sequences. A 3% sequence divergence between 205-bp sequences flanking the double-strand break caused a 6-fold reduction in repair compared with identical sequences. This reduction in heteroduplex rejection was suppressed in a mismatch repair-defective msh6 Delta strain and partially suppressed in an msh2 separation-of-function mutant. In mlh1 Delta strains, heteroduplex rejection was greater than in msh6 Delta strains but less than in wild type. Deleting PMS1, MLH2,or MLH3 had no effect on heteroduplex rejection, but a pms1 Delta mlh2 Delta mlh3 Delta triple mutant resembled mlh1 Delta. However, correction of the mismatches within heteroduplex SSA intermediates required PMS1 and MLH1 to the same extent as MSH2 and MSH6. An SSA competition assay in which either diverged or identical repeats can be used for repair showed that heteroduplex DNA is likely to be unwound rather than degraded. This conclusion is supported by the finding that deleting the SGS1 helicase also suppressed heteroduplex rejection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct roles for the Saccharomyces cerevisiae mismatch repair proteins in heteroduplex rejection, mismatch repair and nonhomologous tail removal.

The Saccharomyces cerevisiae mismatch repair (MMR) protein MSH6 and the SGS1 helicase were recently shown to play similarly important roles in preventing recombination between divergent DNA sequences in a single-strand annealing (SSA) assay. In contrast, MMR factors such as Mlh1p, Pms1p, and Exo1p were shown to not be required or to play only minimal roles. In this study we tested mutations tha...

متن کامل

A Delicate Balance Between Repair and Replication Factors Regulates Recombination Between Divergent DNA Sequences in Saccharomyces cerevisiae.

Single-strand annealing (SSA) is an important homologous recombination mechanism that repairs DNA double strand breaks (DSBs) occurring between closely spaced repeat sequences. During SSA, the DSB is acted upon by exonucleases to reveal complementary sequences that anneal and are then repaired through tail clipping, DNA synthesis, and ligation steps. In baker's yeast, the Msh DNA mismatch recog...

متن کامل

GOLDFARB and ALANI 1 Distinct roles for the Saccharomyces cerevisiae mismatch repair proteins in heteroduplex rejection, mismatch repair, and non-homologous tail removal

The Saccharomyces cerevisiae mismatch repair (MMR) protein MSH6 and the SGS1 helicase were recently shown to play similarly important roles in preventing recombination between divergent DNA sequences in a single-strand annealing (SSA) assay. In contrast, MMR factors such as Mlh1p, Pms1p, and Exo1p were shown to not be required, or to play only minimal roles. In this study we tested mutations th...

متن کامل

Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination.

When gene conversion is initiated by a double-strand break (DSB), any nonhomologous DNA that may be present at the ends must be removed before new DNA synthesis can be initiated. In Saccharomyces cerevisiae, removal of nonhomologous ends depends not only on the nucleotide excision repair endonuclease Rad1/Rad10 but also on Msh2 and Msh3, two proteins that are required to correct mismatched bp. ...

متن کامل

Heteroduplex DNA Position Defines the Roles of the Sgs1, Srs2, and Mph1 Helicases in Promoting Distinct Recombination Outcomes

The contributions of the Sgs1, Mph1, and Srs2 DNA helicases during mitotic double-strand break (DSB) repair in yeast were investigated using a gap-repair assay. A diverged chromosomal substrate was used as a repair template for the gapped plasmid, allowing mismatch-containing heteroduplex DNA (hDNA) formed during recombination to be monitored. Overall DSB repair efficiencies and the proportions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 25  شماره 

صفحات  -

تاریخ انتشار 2004